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Abstract—The paper focuses on the grasp requirements de-
rived from the voluntary and involuntary physical interactions
in instrument manipulations. The manipulation-oriented grasp
requirements include interactive wrench requirements and mo-
tion requirements that are required to accomplish a manipulation
task. The manipulation-oriented grasp requirements are directly
associated with the functionality of the instrument and the
manipulation task, but independent from the robotic hard-
ware. Grasp quality measures developed from the manipulation-
oriented grasp requirements can be used as search criteria for
optimal grasps. Working with hardware-independent grasping
strategies extracted from human demonstration including grasp
type and thumb placement, optimal grasps could be located
efficiently in a dramatically reduced hand configuration space.
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1. INTRODUCTION

Traditionally, robotic grasping and manipulation approaches
have been successful in planning and executing pick-and-place
tasks without any physical interaction with other instruments
or the environment, which are common in an industry setting
with limited uncertainty. When robots move into our daily-
living environment and perform a broad range of tasks in an
unstructured environment, all sorts of physical interactions will
occur, which will result in physical interactive wrench: force
and torque on the instrument in a robotic hand.

In addition, for an instrument to perform a required task,
certain motions need to occur; we call it “functional motion,”
which represents the innate function of the instrument and
the nature of the manipulation task. To successfully complete
the task with a given instrument, the same functional motion
should be carried out no matter if the instrument is in the
hand of a human or a robot, and similar interactive wrench
will occur.

Both the functional motion and wrench requirements can be
developed into grasp quality measures to serve the purpose of
finding a grasp that best facilitate the instrument manipulation.
The grasp should maintain a firm grip and withstand interactive
wrench on the instrument during the task; and the grasp should
enable the manipulator to carry out the task most efficiently.

Works in [1], [2], [3], [4], [5] incorporated force require-
ment into the grasp measure. However, the difficulty of mod-
eling a task has been a main challenge in task-oriented grasp
planning [6]. Most of the related works empirically approx-
imate the task wrench space rather than really measuring it
from the physical world.

Several components of the proposed approach has been
published before. The grasping force in manipulation tasks

Fig. 1: Instruments are modified for recording interactive
motion, force, and torque.

was first investigated in [7]. The grasp measure derived from
the wrench distributions in interactive manipulation tasks was
originally presented in [8]. Its extended version is published in
[9]. Recently, we have developed the grasp measure based on
the functional motion requirement and combined it with the
task coverage measure from the wrench requirements [10].
Extracting hardware independent strategies such as grasp type
and thumb placement are presented in [11], [12], [13], [14].

2. CHARACTERIZING MANIPULATION TASKS

We have designed and developed a physical-interaction
observation system that not only observes the motion of the
instruments, but also the interactive wrench between the instru-
ment and environment in great detail. Using the observation
system, we have collected the instrument motion and wrench
measurements in several representative instrument manipula-
tion tasks by a number of participants. Each manipulation
task are characterized with its wrench distribution models and
functional motion models.

The handles of the selected instruments are removed and
replaced with a swappable 3D printed handle that is embedded
with a six-axis ATI Mini40 force and torque sensor. The
sensor is located at the front end of the handle to collect the
interactive wrench applied to the instrument. A set of markers
are mounted on the instrument and they are observed by a
marker-based motion tracking system NaturalPoint OptiTrack
MoCap to obtain the functional motion during interactions.
The setup is shown in Figure 1.

2.1. Task wrench models and requirements

For different tasks, even for the same instrument, the wrench
on the instrument could be significantly different. For example,
a user was asked to perform a cutting task and a butter-
spreading task with the same knife. The interactive wrench
distributions in the two tasks are reported in Figure 2(a)-(d).



As shown for the cutting task in Figure 2(a), significant cutting
force is applied on the cutting edge (along z axis) and along
with friction force mainly along the knife’s long direction (x
axis). The torque generated along with the force is shown
in Figure 2(b). For the butter-spreading task shown in Figure
2(c) and (d), the knife applies pressure along knife blade sides
(y axis), along with friction along the z axis. As we have
observed, neither of the two task wrench distributions could
be represented well with a 6D ellipsoid that is usually used in
traditional grasping and manipulation planning [9].
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Fig. 2: (a)-(b): Cutting task distribution of task wrenches
projected to Fx-Fy-Fz and Tx-Ty-Tz subspaces, respectively,
where the task wrenches are distributed mainly in -Fz and
Fx; (c)-(d): Corresponding task wrench distribution for butter-
spreading task, where the task wrenches are distributed pri-
marily in +Fy, -Fy, +Fz, +Tz, -Tz.

From the collected data, we model the task wrench distribu-
tion (TWD) with the following two approaches: nonparametric
modeling and Gaussian mixture modeling. The nonparametric
model does not make any assumption about the task wrench
density distribution and allows the distribution shape to be
determined entirely from the collected data. We compute
and use a histogram to estimate the density distribution and
then use a kernel density estimation with Gaussian kernels
to provide a smooth and continuous representation of the
distribution.

A grasp of the instrument in the interactive task should be
able to hold on to the instrument and provide the interactive
wrench during the task. Therefore, how much the desired task

wrench space is covered by the grasp wrench are used to
evaluate how good the grasp is. The detailed formula is in

[9].

2.2. Functional motion model and requirements

Instead of dealing with human motions, we directly record,
analyze, and understand the innate functional motions of the
instrument [15], [16], [17]. The instrument’s functional motion
can be decomposed into a sequence of events that have a
natural physical interpretation. We apply a statistical approach
and model a sequence of events from collected data.

To perform a task, the instrument motion trajectory can
either be computed by a motion planner or generated from
a learned motion model. Grasping with a robotic hand give
flexibility in “mounting” the instrument onto the robotic arm
— a different grasp will connect the instrument to the robotic
arm with a different pose, then the inverse kinematics approach
will result in a different joint motion to achieve the same func-
tional motion. Therefore, the grasp and the functional motion
decide the manipulator’s motion. With a desired functional tool
motion, the grasp determines the manipulator’s motion. Since
different manipulator motions will have different efficiency
rates in transferring the motion from joints to the instrument,
the efficiency of the manipulation motion should be used to
evaluate the grasp.

Transformation from the robotic wrist to a held instrument
is decided by the grasp matrix G. The forward kinemat-
ics from the manipulator joint angles to the instrument is
T; = T(6)w G, where T is the total forward kinematics and
T(0)w is the forward kinematics from joint angles 6 to the
robotic wrist. With different grasps (different grasp matrices),
to generate the same function motion of the instrument, it
would require different sequences of manipulator joint angles.
Since the joint angles determine the manipulator’s configu-
ration and the motion transmission efficiency (manipulabil-
ity), different grasp would results different manipulabilities.
Therefore we use the manipulability ellipsoid to measure the
effectiveness of a grasp. The detailed formula is in [10].

3. LEARNING GRASP STRATEGIES

The quality measures in both wrench coverage and manipu-
lation efficiency are determined by contact points of the robotic
hand on the tool, and contact points are further determined by
the hand posture as well as the relative hand position and
orientation. Therefore, a grasp G can be defined with an array
of finger joint angles and hand position and orientation. When
a robotic hand with high DOF is used, strategies learned from
demonstrations are introduced to reduce the search space.

Previously researchers imposed appropriate contact points
on the object (e.g. [18], [19], [20], [21], [22]). The constraint
on contact points, however, is assumed to be independent of
physical constraints of a given hand. It raises the problem
of solving the inverse kinematics that satisfies the constraints
imposed by contact points [23], which in many cases resolved
no solution due to the limitations of the robotic hardware.



Instead of learning grasping points, we extract and use two
more abstract strategies: grasp types and thumb placement.
They confine the configuration space, but leave enough room
for grasp planning to find the optimal stable grasp that is
adapted to different robotic hands.

3.1. Grasp types

A grasp type abstracts the manner in which a human grips
an object for a manipulation. It can either be input by a user
or recognized in a demonstration. Our previous works [14],
[12], [7] have shown that using hand joint trajectories are
more effective than static poses since it disambiguates different
grasp types that share similar static poses.

For robotic hands with less DOF, fewer grasp types can be
defined. Taking the Barrett hand as an example, we defined
only five grasp types, much fewer than the human hand: power
grasp, power sphere, precision grasp, precision sphere, and
lateral pinch. To map from the learned grasp types from human
grasps, some grasp types can be grouped into one. Detailed
grouping is in [14].

For a particular instrument manipulation task, a grasp type
is learned from human demonstration and then mapped to the
robotic hand’s grasp type.

3.2. Thumb placement

There is general agreement in anthropology that thumb
plays a key role in gripping an object efficiently. The crucial
feature distinguishing human hand from other apes is the
opposable thumb. The same situation applies to robots that
almost all robotic hands have a long and strong opposable
thumb. Mapping only thumb position from a human hand to
a robot hand is simple because there is little correspondence
problem and it can be easily generalized to different robotic
hand models.

Both the grasp types and the thumb placement dramatically
reduce the hand configuration space for searching an optimal
grasp. For example, the constrains introduced by the thumb
placement of a Barrett Hand reduces its configuration dimen-
sion from ten (six for the wrist and four for the fingers) to
two or three depending on grasp types. More detail is in [13],
[14].

4. CONCLUSION

To facilitate the physical interaction in an instrument manip-
ulation task, robotic grasp should meet the interactive wrench
and motion demands that are required to accomplish the ma-
nipulation. Those demands are independent from the robotic
hardware, but are directly derived from the functionality of
the instrument and the manipulation task and represent the
dynamics of the interaction. Two grasp quality measures are
developed from the interactive wrench and motion require-
ments and then used as search criteria for optimal grasps. The
search or optimizing process can be dramatically improved
by narrowing down the optimization search space using prior
grasping strategies that are independent from robotic hardware,
including grasp type and thumb placement.
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